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Discerning differences among anomalously wandering directed polymers

Ning-Ning Pang
Physics Department, Columbia University, New York, New York 10027

Timothy Halpin-Healy
Physics Department, Barnard College, Columbia University, New York, New York 10027-6598
(Received 22 September 1992)

We contrast the effects of uncorrelated power-law noise and linearly correlated Gaussian noise upon
the anomalous wandering of directed polymers in random media. In the first instance, we explore the
role of the noise on the morphology of the ultrametric tree structure of the ensemble of locally optimal
paths, and then, motivated by the work of Zhang [Phys. Rev. Lett. 59, 2125 (1987)] and more recently by
Perlsman and Schwartz [Europhys. Lett. 17, 11 (1992)], provide strong evidence for the universality of
the model’s river basin patterns. Lastly, we discuss those precise features of the positional and energy
fluctuations that could permit a resourceful experimentalist to discern the noise distribution underlying
anomalous roughening recently observed in fire fronts, bacterial growth, and fluid flow through porous

media.

PACS number(s): 02.50.—r, 05.40.+j, 61.50.Cj

Because of its immediate and varied connections to a
broad collection of outstanding, difficult questions in the
statistical mechanics of ill-condensed matter [1], the
problem of directed polymers in a random medium
(DPRM) has achieved a well-deserved notoriety, captur-
ing the attention of many practitioners in the field. In its
initial guise, the (1+ 1)-dimensional DPRM appeared in
the context of impurity-induced domain-wall roughening
in disordered two-dimensional (2D) magnets [2]. More
recently, the many-dimensional DPRM has surfaced in
discussions of Abrikosov vortices in high-T, supercon-
ductors [3], dislocation lines in disordered solids [4], as
well as the possible conformations of a polyelectrolyte in
a gel matrix. Kardar and Zhang [5], who introduced the
DPRM and noted its important connection to the noisy
Burgers equation, made the crucial observation that the
physics of the low-dimensional DPRM was controlled by
a zero-temperature fixed point, implying that the finite-
temperature properties of the polymer would be identical
to those at T=0. These same authors, with the assis-
tance of the Europeans [6], soon came to appreciate the
DPRM as a more manageable but equally rich version of
the very stubborn spin-glass problem, complete with is-
sues of replica-symmetry breaking (RSB), and structural
matters associated with an ultrametric free-energy
landscape. Indeed, at 7 =0, the DPRM becomes a
matter of global optimization, an amusing variant of the
traveling-salesman problem in which, fittingly enough,
maximization of commission, rather than minimization
of path length, becomes the goal at hand. Finally, as
stressed by Kardar and Zhang, the ultrametric properties
of the DPRM ensemble of locally optimal paths bear a
striking resemblance to patterns produced by Nature her-
self, including river basin deltas, capillary networks in the
circulatory system, and neuronal arrays in the brain.

It is the purpose of this paper to concentrate on these
geometric properties; not so much with an eye to testing
their legitimacy as models of Nature’s pattern formation,
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but rather on the role of the noise distribution on their
structure. In particular, we concern ourselves with
power-law noise distributions which, within the realm of
KPZ [7], have recently been proposed to account for
anomalous scaling [8] observed in fire fronts [9], bacterial
colonies [10], and fluid fronts in porous media [11]. In
the present context, the freedom associated with the
power-law tail of the noise distribution permits us an in-
teresting laboratory in which to study the changing mor-
phology of the random energy landscape, to make con-
nections to the apparently unrelated case of correlated,
Gaussian noise [12], to comment on recent findings [13]
regarding DPRM ultrametricity, and lastly to discuss,
precisely, what are the discernable differences between
anomalous wanderers.

Let us first recall the 7 =0 formulation of the 1+1
DPRM. It is conveniently visualized [14] by considering
the first quadrant of the square lattice, upon which
quenched random energies (drawn from a variety of prob-
ability distributions—uniform, Gaussian, power-law) are
placed on all the bonds. Neighboring bonds are assumed,
momentarily, to be uncorrelated. It is in this manner
that we create a single realization of the random energy
landscape. Our interest is in the collection of paths
emanating from the origin that proceed forward by single
steps in the vertical (y) or horizontal (x) directions. As
these paths are directed (backtracking not permitted), we
naturally identify the diagonal (y =x) as the longitudinal
or time direction. The energy of a given path of n steps is
given by the algebraic sum of the bonds visited along the
way. There are 2" paths reaching the end points of the
nth time slice and, of these, n + 1 constitute the ensemble
of locally optimal paths of maximal energy with end
point specified. Geometrically, this set (see Fig. 1, for ex-
ample) gives rise to the DPRM river basin deltas men-
tioned earlier. Note, however, that the details of the pat-
tern are very much sample dependent, though interesting
statistical information can be had and, furthermore, even
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for a single random energy landscape, configurations un-
dergo drastic revision from one time slice to the next.
Within a locally optimal ensemble, the path of absolute
greatest energy is referred to as globally optimal. The
statistical properties of this sole path, obtained by averag-
ing over many realizations of the random energy
landscape, are well known for the 1+1 DPRM. Its
transverse positional fluctuations about the symmetry
axis are governed by the wandering exponent &, which,
for uncorrelated Gaussian noise [2], has the
superdiffusive value Z.

Our interest at this point is in power-law random bond
energies distributed as P(e)=¢~ **1 for £ > 1, zero oth-
erwise, as first proposed by Zhang [8,15]. We generated
the power-law tails by drawing a random number uni-
formly from the unit interval [0,1] and raising it to the
power —1/u, being careful to be aware of the graininess
of the Numerical Recipes [16] supplied subroutine RAN3.
This is especially important for the power-law DPRM be-
cause it is the rare event, buried deep in the tail, that fixes
the scaling properties, both energy and geometric. Our
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FIG. 1. River basin deltas associated with the power-law
DPRM: (a) u=1, (b) u=3, and (c) u=7. The patterns were all
generated from the same seed, but evolve differently when the
tail of the distribution is changed.
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main purpose, initially, was to understand the effect of
varying u on the nature of the random-energy landscape
and, in particular, its role in determining the geometric
structure of the DPRM delta. As is well known, the case
@ =2 is marginal (the second moment of the bare proba-
bility distribution is logarithmically divergent), with p <2
corresponding to Levy flights, while p=~2-3 has become
the focus of attention of the kinetic roughening commun-
ity as the most physically relevant range, providing a pos-
sible explanation for the anomalous scaling [9-11] ob-
served in propagating fire fronts, bacterial colonies, and
fluid fronts in porous media. It should be stressed that,
in sharp contrast to the DPRM with Gaussian noise
(both correlated and not), there has been precious little
analytical progress in the context of power-law distribu-
tions, aside from a novel Flory argument proposed in-
dependently by Krug [17] and Zhang [18] that is based
on the occurrence of rare, but dominant fluctuations in-
herent in power-law tails. These authors predict
Suw)=(u+1)/(2u—1) for the power-law DPRM
wandering exponent—a formula that is entirely con-
sistent with numerical simulations for small values of
©>2, but incorrectly predicts a u,=5. Indeed, recent
work of Bourbonnais, Herrmann, and Vicsek [19] has
convincingly established that it is for pu,=7 that the
power-law tail drops sufficiently fast for the wandering
exponent to fall to its uncorrelated, Gaussian noise value.

In Fig. 1, we plot the DPRM deltas for u=1, 3, and 7.
Please note that each of the deltas was generated using
the same seed to initialize the random number generator,
so that the figure truly illustrates the evolution of the
river basin morphology as the power-law tail is changed.
We observe the following features. For u=1, which cor-
responds to an extreme Levy flight case, there is a
predominance of straight-line segments and persistence of
right angle vertices on macroscopic scales that appear
lost, or at least greatly weakened, as u is increased
beyond 2 to 3. This substantive qualitative change is also
manifest as u— 3 in an increased jaggedness of the trajec-
tories and an enhanced meandering in the middle of the
delta. By contrast, a comparison of the deltas for p=3
and 7 reveals a morphological shift that is much more
modest, being one of degree rather than kind. In other
words, the important geometric characteristics gleaned
from the pu=3 delta are maintained, and merely
amplified, as the range of the power-law tail is decreased.
Finally, there is a growing ratio of black to white (indica-
tion of an increasing fractal dimension), while the persis-
tance of linearity is for the most part relegated to the bor-
der paths and their immediate neighbors.

In Fig. 2, we have paired together the DPRM delta
corresponding to power-law noise with u=2, for which
numerical studies strongly suggest that {=1, and the
river basin pattern generated by linearly correlated,
Gaussian noise. For the latter, the globally optimal path
through the random energy landscape is identical to the
1D interface in a 2D random-field (RF) Ising model, a
problem [20] with a long, colorful, and contentious histo-
ry that is, nevertheless, characterized by the very same
wandering exponent as pu=2 power-law noise. That
Srp=1 was established numerically by Fernandez et al.
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FIG. 2. River basin deltas resulting from two very different
bare noise distributions that, nevertheless, produce identical
DPRM wandering exponents. (a) linearly correlated, Gaussian
noise; (b) uncorrelated, u=2 power-law noise. Distinct random
number generator seeds; apparently quite different patterns.

[21], then analytically by Zhang [22] via the stochastic
Burgers equation, and finally rigorously by Imbrie [23],
who settled once and for all the lower critical dimension
of the model. Unfortunately, the fact that two grossly
different noise distributions can give rise to the same
anomalous wandering exponent has muddied the waters
somewhat within the kinetic roughening community,
though the presently prevailing sentiment is to attribute
the anomalous scaling seen in the experiments [9-11] to
uncorrelated power-law noise distributions. From a ma-
terials science point of view, it is plausible, though not
entirely obvious, why this should be so, but, in an effort
to categorize what, if any, are the discernible differences
between the RF and p=2 distributions upon the scaling
properties of anomalous wanderers, we felt obliged to ad-
dress this matter, both at the geometric level of the
DPRM deltas, as well as the fully renormalized probabili-
ty distributions.

With regard to delta ultrametricity, our findings
strongly support the notion of universality first proposed
by Zhang [14], who phrased the discussion of basin
geometry in terms of ancestry and progeny of the net-
work, as well as the more recent efforts of Perlsman and
Schwartz [13], who addressed this issue quantitatively by
examining the cross section and branching probability of
the globally optimal path. For the special case of un-
correlated, Gaussian noise, these authors provide quite
convincing numerical evidence that all geometric proper-
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FIG. 3. Cross section of the globally optimal path as a func-
tion of height 4 from the base of the river basin delta. At a par-
ticular height, w is defined as the total number of rivulets that
emanate from the globally optimal path below that point. 5000
realizations of the random-energy landscape. The data strongly
suggest that the RF and u=2 cases scale in the same manner,
with slopes identical to our independently extracted wandering
exponents, as predicted by Perlsman and Schwarz [13]. Lower
curve offset —0.5 for visibility.

ties of the basin pattern are dictated by the wandering ex-
ponent {. Our findings are in complete agreement with
this idea—Fig. 3 reveals that the large sample-dependent
differences evident in the deltas of the previous figure are
statistically irrelevant, so that upon averaging over many
realizations of the random-energy landscape, an impor-
tant geometrical property of the delta, such as the cross
section of the globally optimal path, scales the same for
both the u=2 and RF distributions. The curves have
slopes identical to our numerically determined wandering
exponents, both near unity. Note that the cross section,
defined as the total number of branches emanating from
the globally optimal path, scales properly only over a lim-
ited range, as first observed by Perlsman and Schwartz
[13]. The abrupt saturation that occurs at large heights is
easily understood in a quantitative fashion as a manifesta-
tion of a (non)-interference effect seen by Mezard [6] in a
related context. Additional evidence in favor of univer-
sality is given in Fig. 4, which shows that the branching
probability of the globally optimal path is apparently the
same regardless of the distribution. Thus, our own con-
clusion is clear—at the level of the DPRM delta, there
are no discernible differences, since the important statisti-
cal properties of the basin geometry are dictated entirely
by the value of wandering exponent, not the underlying,
bare probability distribution.

Dramatic differences between RF and y =2 anomalous
wandering are easily perceived, however, when we ask
appropriate questions at the level of probability distribu-
tions [24] and amplitudes [25] that completely character-
ize the fluctuations of the globally optimal path. For ex-
ample, the relative amplitudes of the first four even mo-
ments of positional probability distribution are in the ra-
tio 1.00:1.30:1.52:1.70 for the pu=2 case, but
1.00:1.24:1.40:1.53 for the RF DPRM. This rather im-
pressive distinction appears to arise from the distinction
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FIG. 4. Branching probability of the globally optimal path as
a function of height for RF and p=2 DPRM. P(h) is the nor-
malized probability, obtained by sampling 5000 realizations of
the random-energy landscape, that the globally optimal path
branches at a height & above the base of the river basin delta.
The straight lines have slope —1, providing strong evidence
that, aside from crossover and saturation effects, this probability
falls inversely with height, independent of the underlying noise
distribution. Perlsman and Schwartz [13] had previously noted
this behavior for the uncorrelated, Gaussian DPRM. Our work
establishes the universality of their discovery. Because of nearly
perfect coincidence, the lower curve has been offset.

between correlated and uncorrelated noise, since the ra-
tios for various power-law DPRM all tended to be quite
close, somewhat surprisingly, to the ordinary random-
bond DPRM [24]. Differences are even more explicit for
the renormalized energy probability distributions, see
Fig. 5, where we note a narrow, statistically smooth, but
highly skewed distribution for RF roughening (skewness
|s|=0.43, compared to |s|=0.29 for the standard
random-bond DPRM [25]). By contrast, though still
asymmetric, the renormalized energy distribution result-

(E—et)/t*

FIG. 5. Very different disorder-averaged energy probability
distributions for the RF and u=2 DPRM. Here, P(E,t)
represents the probability that a globally optimal path of length
t steps has total energy E. 50000 realizations; path length 500
steps. Rescaled data collapse for time slices ¢ =300,400,500.
The energy fluctuation exponent  is near unity for both cases,
while e is the average energy per step.

ing from a =2 power-law tail is very noisy, with an ill-
defined third cumulant, and much, much broader than
that of the RF DPRM. As the fluctuations of the DPRM
are closely tied to those of a stochastically evolving KPZ
surface, we suggest the experimental relevance of these
features in identifying the underlying noise distribution
responsible for recently observed anomalous Kinetic
roughening. It is our expectation that the matter will
soon be settled at this level of inquiry.
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